Abstract

Bacillus thuringiensis, a gram-positive sporulating bacteria found in the environment, produces, during its sporulation phase, crystals responsible for its insecticidal activity, constituted of an assembly of pore-forming δ-endotoxins. This has led to its use as a biopesticide, an eco-friendly alternative to harmful chemical pesticides. To minimize production cost, one endemic Bacillus thuringiensis sv. kurstaki (Btk) strain Lip, isolated from Lebanese soil, was cultivated in a wheat bran (WB) based medium (IPM-4-Citrus project EC n° 734921). With the aim of studying the biochemical limitations of Btk biopesticide production in a wheat bran based medium, the WB was sieved into different granulometries, heat treated, inoculated with Btk Lip at flask scale, then filtered and separated into an insoluble and a permeate fractions. Several biochemical analyses, ie. bio performances, starch, elemental composition, total nitrogen and ashes, were then conducted on both fractions before and after culture. On a morphological level, two populations were distinguished, the fine starch granules and the coarse lignocellulosic particles. The biochemical analyses showed that both the raw and sieved WB have a similar proteins content (0.115 g/gdm WB), water content (0.116 g/gdm WB) and elemental composition (carbon: 45%, oxygen: 37%, nitrogen: 3%, hydrogen: 6%, ashes: 5%). The starch content was 17%, 14% and 34% and the fermentable fraction was estimated to 32.1%, 36.1% and 51.1% respectively for classes 2, 3 and 4. Both the elemental composition and Kjeldahl analyses showed that the nitrogen is the limiting nutrient of the culture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call