Abstract

Phloroglucinol (1,3,5-trihydroxybenzene) is an important intermediate in the degradation of flavonoids and tannins by anaerobic bacteria. Recent studies have shed light on the enzymatic mechanism of phloroglucinol degradation in butyrate-forming anaerobic bacteria, including environmental and intestinal bacteria such as Clostridium and Flavonifractor sp. Phloroglucinol degradation gene clusters have also been identified in other metabolically diverse bacteria, although the polyphenol metabolism of these microorganisms remain largely unexplored. Here, we describe biochemical studies of polyphenol degradation enzymes found in the purple non-sulfur bacterium Rubrivivax gelatinosus IL144, an anaerobic photoheterotroph reported to utilize diverse organic compounds as carbon sources for growth. In addition to the phloroglucinol reductase and dihydrophloroglucinol cyclohydrolase that catalyze phloroglucinol degradation, we characterize a Mn2+-dependent phloretin hydrolase that catalyzes the cleavage of phloretin into phloroglucinol and phloretic acid. We also report a Mn2+-dependent decarboxylase (DeC) that catalyzes the reversible decarboxylation of 2,4,6-trihydroxybenzoate to form phloroglucinol. A bioinformatics search led to the identification of DeC homologs in diverse soil and gut bacteria, and biochemical studies of a DeC homolog from the human gut bacterium Flavonifractor plautii demonstrated that it is also a 2,4,6-trihydroxybenzoate decarboxylase. Our study expands the range of enzymatic mechanisms for phloroglucinol formation, and provides further biochemical insight into polyphenol metabolism in the anaerobic biosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call