Abstract

Wetlands are globally distributed ecosystems characterized by predominantly anoxic soils, resulting from water-logging. Over the past millennia, low decomposition rates of organic matter led to the accumulation of 20-30% of the world's soil carbon pool in wetlands. Phenolic compounds are critically involved in stabilizing wetland carbon stores as they act as broad-scale inhibitors of hydrolytic enzymes. Tyrosinases are oxidoreductases capable of removing phenolic compounds in the presence of O2 by oxidizing them to the corresponding o-quinones. Herein, kinetic investigations (kcat and Km values) reveal that low-molecular-weight phenolic compounds naturally present within wetland ecosystems (including monophenols, diphenols, triphenols, and flavonoids) are accepted by five recombinantly expressed wetland tyrosinases (TYRs) as substrates. Investigations of the interactions between TYRs and wetland phenolics reveal two novel mechanisms that describe the global impact of TYRs on the wetland carbon cycle. First, it is shown that o-quinones (produced by TYRs from low-molecular-weight phenolic substrates) are capable of directly inactivating hydrolytic enzymes. Second, it is reported that o-quinones can interact with high-molecular-weight phenolic polymers (which inhibit hydrolytic enzymes) and remove them through precipitation. The balance between these two mechanisms will profoundly affect the fate of wetland carbon stocks, particularly in the wake of climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.