Abstract

The purpose of this study was to investigate the effects of equol, a plant and intestinal flora derived isoflavonoid molecule on the expression of skin genes and proteins using human dermal models. As equol has been shown to mimic 17β-estradiol and bind specifically to 5α-dihydrotestostone (5α-DHT), these agents were used (in addition to equol) to determine whether equol may play important and beneficial roles in the extracellular matrix (ECM). Equol at 0.3 or 1.2% in qPCR experiments using a human skin barrier model examined ECM gene expression. Equol, 5α-DHT, and 17β-estradiol at 10 nM were studied in human monolayer fibroblasts cultures (hMFC) for ECM protein expression. Human fibroblast three-dimensional organotypic cultures revealed equol's influence (@ 10 nM) on ECM proteins via fluorescent-activated cell sorting (FACS) analysis. In qPCR experiments, equol significantly increased collagen, elastin (ELN), and tissue inhibitor of metalloprotease and decreased metalloproteinases (MMPs) gene expression and caused significant positive changes in skin antioxidant and antiaging genes. In hMFC, equol significantly increased collagen type I (COL1A1), whereas, 5α-DHT significantly decreased cell viability that was blocked by equol. FACS analysis showed equol and 17β-estradiol significantly stimulated COL1A1, collagen type III (COL3A1), and ELN while MMPs were significantly decreased compared with control values. Finally, tamoxifen blocked the positive influences of equol on ECM proteins via FACS analysis. These findings suggest that equol has the potential to be used topically for the treatment and prevention of skin aging, by enhancing ECM components in human skin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.