Abstract
Alzheimer's β-amyloid (Aβ) peptides can self-organize into amyloid pores that may induce acute neurotoxic effects in brain cells. Membrane cholesterol, which regulates Aβ production and oligomerization, plays a key role in this process. Although several data suggested that cholesterol could bind to Aβ peptides, the molecular mechanisms underlying cholesterol/Aβ interactions are mostly unknown. On the basis of docking studies, we identified the linear fragment 22-35 of Aβ as a potential cholesterol-binding domain. This domain consists of an atypical concatenation of polar/apolar amino acid residues that was not previously found in cholesterol-binding motifs. Using the Langmuir film balance technique, we showed that synthetic peptides Aβ17-40 and Aβ22-35, but not Aβ1-16, could efficiently penetrate into cholesterol monolayers. The interaction between Aβ22-35 and cholesterol was fully saturable and lipid-specific. Single-point mutations of Val-24 and Lys-28 in Aβ22-35 prevented cholesterol binding, whereas mutations at residues 29, 33, and 34 had little to no effect. These data were consistent with the in silico identification of Val-24 and Lys-28 as critical residues for cholesterol binding. We conclude that the linear fragment 22-35 of Aβ is a functional cholesterol-binding domain that could promote the insertion of β-amyloid peptides or amyloid pore formation in cholesterol-rich membrane domains.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.