Abstract

Electrophoretic and activity variants for a liver aldehyde reductase (AHR-A2) among strains of Mus musculus have been used in genetic analyses to demonstrate close linkage between the locus encoding this enzyme (designated Ahr-1) and the alcohol dehydrogenase gene complex on chromosome 3. No recombinants were observed between Adh-3 (encoding alcohol dehydrogenase C2; ADH-C2) and Ahr-1 among 42 backcross animals. Moreover, linkage disequilibrium between these loci was observed among 58 of 60 strains of mice examined and among seven recombinant inbred strains derived from C57BL/6J and BALB/c mice. Liver hexonate dehydrogenase (HDH-A) was electrophoretically invariant among the strains examined. Gel filtration analyses demonstrated that AHR-A2 and HDH-A had native molecular weights of approximately 80,000 and 32,000, respectively. Three-banded allozyme patterns for AHR-A2 in CBA/H x castaneus hybrid animals were consistent with a dimeric subunit structure. Comparative substrate and coenzyme specificities for AHR-A2, HDH-A, and ADH-A2 (liver ADH isozyme) were examined. AHR-A2 exhibited a defined specificity toward p-nitrobenzaldehyde as substrate, whereas the other enzymes exhibited broad specificities toward various aliphatic, aromatic, and monosaccharide aldehydes. It is proposed that Ahr-1 is a product of a gene duplication event during mammalian evolution of the primordial mammalian Adh locus and that considerable divergence in catalytic properties has subsequently occurred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.