Abstract

Gene-enzyme variation was studied electrophoretically within and between barnacle populations of the genus Chthamalus from 8 intertidal stations from central California to the Pacific coast of Panama. Horizontal starch-gel electrophoresis separated and resolved 18 enzymes from 512 individual barnacles. A maximum of 25 gene-enzyme systems was interpretable from the resulting zymograms. Electrophoretic phenotypes and patterns of phenotypic variation generally conformed with those observed in other organisms. The amount of genetic variation within barnacle populations varied; average heterozygosity, for example, ranged from a low of 3.4% in a Mexican population of the C. fissus group to a high of 10.4% in C. anisopoma from the Gulf of California. Observed and expected average heterozygosities agreed in all population samples, indicating that these species are outbreeding. In contrast to the prediction stemming from a hypothesis that trophic stability regulates the amount of genetic variation in marine species, average heterozygosity tends to be positively correlated with latitude. Data from these and other barnacle species may support a hybrid “environmental heterogeneity-trophic diversity” model recently proposed to explain genetic variation in decapod crustaceans. Juxtaposition of individuals from different localities revealed numerous genetic differences among populations of the C. fissus group. At least three partially sympatric sibling species are separated by genetic distances as large as those observed between the C. fissus group and the distinct species C. dalli and C. anisopoma. A cladistic analysis places C. anisopoma close to the Mexican and Panamanian sibling species, with C. fissus from San Diego and C. dalli successively farther removed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call