Abstract

An in vitro biochemical fuel cell based upon the enzymatically catalyzed aerobic oxidation of glucose is described. The anodic half-reaction employs an electron transfer sequence consisting of the glucose oxidase reductive half-reaction and dichloroindophenol. The cathodic half-reaction involves reduction of molecular oxygen. A high Faradic efficiency for the intact cell approaching 100% has been experimentally demonstrated. The steady state current is exponentially related to the concentration of the terminal electron transfer species in the anodic chamber. The behavior is consistent with application of the Nernst relationship to define the cell potential and a simple resistance circuit. The discharge profile of the cell after complete oxidation of the primary fuel, glucose, can be modeled as a capacitor discharging through a resistor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.