Abstract

It is known that the level of cGMP is modulated in response to a number of stimuli in plant cells but intracellular events distal to cGMP metabolism are not clear. Cyclic GMP-dependent protein kinase (Pk-G) is a major effector of cGMP action in animals and yeasts. We wanted to determine whether such kinase is present in plant cells. A soluble protein kinase was isolated from seedlings of Pharbitis nil and purified following purification methods including anion-exchange and affinity-chromatography. The enzyme consists of a single polypeptide of Mr 70 kDa as determined by SDS–PAGE. From conventional modulators only cyclic GMP, when applied in low concentration, was able to accelerate the enzyme activity in the presence of histones. The enzyme autophosphorylated on serine and threonine residues and phosphorylated some substrates only on serine residues. Mixture of histones and histones H2B, H3 were the best phosphate acceptors. The process of autophosphorylation was accelerated by a low concentration of cGMP and reduced by high concentration of this second messenger. Antibodies raised against catalytic domain of animals Pk-G I α and β cross-reacted with protein kinase from Pharbitis nil tissue. These data, taken together, demonstrate the presence of functional enzyme, which activity is regulated by cGMP and allow to classify this protein kinase as a member of the second messenger regulated group of enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.