Abstract

Acetylcholinesterase and butyrylcholinesterase both rapidly hydrolyze the neurotransmitter acetylcholine. The unusual three-dimensional structure of acetylcholinesterase, in which the active site is located at the bottom of a deep and narrow gorge, raises cogent questions concerning traffic of the substrate, acetylcholine, and the products, choline and acetate, to and from the active site. Time-resolved crystallography offers a promising experimental approach to investigate this issue but requires a suitable triggering mechanism to ensure efficient and synchronized initiation of the dynamic process being monitored. Here we characterize the properties of two photolabile triggers which may serve as tools in time-resolved crystallographic studies of the cholinesterases. These compounds are 2-nitrobenzyl derivatives of choline and of carbamylcholine, which generate choline and carbamylcholine, respectively, upon photochemical fragmentation. Both photolabile compounds are reversible inhibitors, which bind at the active sites of acetylcholinesterase and butyrylcholinesterase with inhibition constants in the micromolar range, and both photofragmentation processes occur rapidly and with a high quantum yield, without substantial photochemical damage to the enzymes. Photolysis both of acetylcholinesterase and of butyrylcholinesterase, complexed with a 2-nitrobenzyl derivative of choline, resulted in regeneration of enzymic activity. Photolysis of acetylcholinesterase complexed with the 2-nitrobenzyl derivative of carbamylcholine led to time-dependent inactivation, resulting from carbamylation of acetylcholinesterase, which could be reversed upon dilution, due to decarbamylation. Both sets of experiments demonstrated release of choline within the active site. In the former case, choline was produced photochemically at the active site. In the latter case, choline was generated enzymatically, within the active site, concomitantly with carbamylation of the acetylcholinesterase. The two photolabile compounds may thus serve as complementary probes for time-resolved studies of the route of product release from the active sites of the cholinesterases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.