Abstract

Microbially-induced calcite precipitation (MICP) is a relatively new and sustainable soil improvement technique. This technique utilizes bio-activity of microorganism to precipitate calcite through metabolic activities of the organisms which decompose urea in to ammonium and carbon dioxide. The carbonate so produced combined with the supplied calcium to precipitate calcite. This calcite improves engineering properties of soil through the formation of coating and bonds between soil particles. Preliminary results have proved the feasibility of the isolated bacteria in MICP treatment technique to improve the engineering properties of marginal soil. The main objective of this study is to determine the preference conditions for effective MICP treatment in improving the soil engineering properties (Unconfined Compressive Strength, California Bearing Ratio and Hydraulic Conductivity) of a typical marginal soil. Variables such as; treatment duration (24, 48, and 72hours), reagent concentration (0.1, 0.25, 0.5, and 0.75M), and concentration of the isolates (1×105, 1×106, and 1×107cfu/ml) were considered in the MICP treatment. The results suggested that the preference treatment conditions were 72hours treatment duration, 0.75M reagent concentration, and 1×107cfu/ml concentration of the isolates. The corresponding alterations recorded were 94.86KN/m2 (295%) and 30.8% (92.5%) increment for CBR and UCS while 0.93X10-6m/s (78.95%) reduction was recorded for hydraulic conductivity. The calcite content showed a reasonably good comparison with the improvements in the soil engineering properties. The pH of effluents increased during MICP treatment indicating the presence of urease bio-activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.