Abstract

Human colorectal tissues obtained by ten cancer patients have been examined by multiple micro-Raman spectroscopic measurements in the 500–3200 cm−1 range under 785 nm excitation. Distinct spectral profiles are recorded from different spots on the samples: a predominant ‘typical’ profile of colorectal tissue, as well as those from tissue topologies with high lipid, blood or collagen content. Principal component analysis identified several Raman bands of amino acids, proteins and lipids which allow the efficient discrimination of normal from cancer tissues, the first presenting plurality of Raman spectral profiles while the last showing off quite uniform spectroscopic characteristics. Tree-based machine learning experiment was further applied on all data as well as on filtered data keeping only those spectra which characterize the largely inseparable data clusters of ‘typical’ and ‘collagen-rich’ spectra. This purposive sampling evidences statistically the most significant spectroscopic features regarding the correct identification of cancer tissues and allows matching spectroscopic results with the biochemical changes induced in the malignant tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.