Abstract

Although voltage-gated sodium channel (VGSC) activity, upregulated significantly in strongly metastatic human breast cancer cells, has been found to potentiate a variety of in vitro metastatic cell behaviors, the mechanism(s) regulating channel expression/activity is not clear. As a step toward identifying possible serum factors that might be responsible for this, we tested whether medium in which fetal bovine serum (FBS) was substituted with a commercial serum replacement agent (SR-2), comprising insulin and bovine serum albumin, would influence the VGSC-dependent in vitro metastatic cell behaviors. Human breast cancer MDA-MB-231 cells were used as a model. Measurements of lateral motility, transverse migration and adhesion showed consistently that the channel's involvement in metastatic cell behaviors depended on the extracellular biochemical conditions. In normal medium (5% FBS), tetrodotoxin (TTX), a highly specific blocker of VGSCs, suppressed these cellular behaviors, as reported before. In contrast, in SR-2 medium, TTX had opposite effects. However, blocking endogenous insulin/insulin-like growth factor receptor signaling with AG1024 eliminated or reversed the anomalous effects of TTX. Insulin added to serum-free medium increased migration, and TTX increased it further. In conclusion, (1) the biochemical constitution of the extracellular medium had a significant impact upon breast cancer cells' in vitro metastatic behaviors and (2) insulin, in particular, controlled the mode of the functional association between cells' VGSC activity and metastatic machinery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call