Abstract
Every year in Mexico, around 300,000 people suffer from accidents related to scorpion stings. Among the scorpion species dangerous to human is Centruroides ornatus, whose venom characterization is described here. From this venom, a total of 114 components were found using chromatographic separation and mass spectrometry analysis. The most abundant ones have molecular masses between 3000-4000 Da and 6000–8000 Da respectively, similar to other known K+ and Na+-channel specific scorpion peptides. Using intraperitoneal injections into CD1 mice, we were able to identify and fully sequenced three new lethal toxins. We propose to name them Co1, Co2 and Co3 toxins, which correspond to toxins 1 to 3 of the abbreviated species name (Co). Electrophysiology analysis of these peptides using heterologously expressed human Na+-channels revealed a typical β-toxin effect. Peptide Co52 (the most abundant peptide in the venom) showed no activity in our in vivo and in vitro model assays. A phylogenetic analysis groups the Co1, Co2 and Co3 among other β-toxins from Centruroides scorpions. Peptide Co52 segregates among peptides of unknown defined functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.