Abstract

RAD52 is a single-stranded DNA (ssDNA) binding protein that functions in the repair of DNA double-strand breaks (DSBs) by promoting the annealing of complementary DNA strands. RAD52 may also play an important role in an RNA transcript-dependent type of DSB repair, in which it reportedly binds to RNA and mediates the RNA-DNA strand exchange reaction. However, the mechanistic details of these functions are still unclear. In the present study, we utilized the domain fragments of RAD52 to biochemically characterize the single-stranded RNA (ssRNA) binding and RNA-DNA strand exchange activities of RAD52. We found that the N-terminal half of RAD52 is primarily responsible for both activities. By contrast, significant differences were observed for the roles of the C-terminal half in RNA-DNA and DNA-DNA strand exchange reactions. The C-terminal fragment stimulated the inverse RNA-DNA strand exchange activity displayed by the N-terminal fragment in trans, whereas the trans stimulatory effect by the C-terminal fragment was not observed in the inverse DNA-DNA or forward RNA-DNA strand exchange reactions. These results suggest the specific function of the C-terminal half of RAD52 in RNA-templated DSB repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.