Abstract
The 3-hydroxyacyl ACP:CoA transacylase (PhaG) was recently identified in various Pseudomonas species and catalyzes the diversion of ACP thioester intermediates of fatty acid de novo biosynthesis toward the respective CoA thioesters, which serve as precursors for polyester and rhamnolipid biosynthesis. PhaG from Pseudomonas putida was overproduced in Escherichia coli as a C-terminal hexahistidine-tagged (His(6)) fusion protein in high yield. The His(6)-PhaG was purified to homogeneity by refolding of PhaG obtained from inclusion bodies, and a new enzyme assay was established. Kinetic analysis of the 3-hydroxyacyl transfer to ACP, catalyzed by His(6)-PhaG, gave K(0.5) values of 28 microm (ACP) and 65 microm (3-hydroxyacyl-CoA) considering V(max) values of 11.7 milliunits/mg and 12.4 milliunits/mg, respectively. A Hill coefficient of 1.38 (ACP) and 1.32 (3-hydroxyacyl-CoA) indicated a positive substrate cooperativity. Subcellular localization studies showed that PhaG is not attached to polyester granules and resides in the cytosol. Gel filtration chromatography analysis in combination with light scattering analysis indicated substrate-induced dimerization of the transacylase. A threading model of PhaG was developed based on the homology to an epoxide hydrolase (1cqz). In addition, the alignment with the alpha/beta-hydrolase fold region indicated that PhaG belongs to alpha/beta-hydrolase superfamily. Accordingly, CD analysis suggested a secondary structure composition of 29% alpha-helix, 22% beta-sheet, 18% beta-turn, and 31% random coil. Site-specific mutagenesis of seven highly conserved amino acid residues (Asp-60, Ser-102, His-177, Asp-182, His-192, Asp-223, His-251) was used to validate the protein model and to investigate organization of the transacylase active site. Only the D182(A/E) mutation was permissive with about 30% specific activity of the wild type enzyme. Furthermore, this mutation caused a change in substrate specificity, indicating a functional role in substrate binding. The serine-specific agent phenylmethylsulfonyl fluoride (PMSF) or the histidine-specific agent diethylpyrocarbonate (DEPC) caused inhibition of 3-hydroxyacyl transfer to holo-ACP, and the S102(A/T) or H251(A/R) PhaG mutant was incapable of catalyzing 3-hydroxyacyl transfer, suggesting that these residues are part of a catalytic triad.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.