Abstract

Lymphatic filariasis is a debilitating disease that affects over 890 million people in 49 countries. A lack of vaccines, non-availability of adulticidal drugs, the threat of emerging drug resistance against available chemotherapeutics and an incomplete understanding of the immunobiology of the disease have sustained the problem. Characterization of Wolbachia proteins, the bacterial endosymbiont which helps in the growth and development of filarial worms, regulates fecundity in female worms and mediates immunopathogenesis of Lymphatic Filariasis, is an important approach to gain insights into the immunopathogenesis of the disease. In this study, we carried out extensive biochemical characterization of Recombinase A from Wolbachia of the filarial nematode Brugia malayi (wBmRecA) using an Electrophoretic Mobility Shift Assay, an ATP binding and hydrolysis assay, DNA strand exchange reactions, DAPI displacement assay and confocal microscopy, and evaluated anti-filarial activity of RecA inhibitors. Confocal studies showed that wBmRecA was expressed and localised within B. malayi microfilariae (Mf) and uteri and lateral chord of adult females. Recombinant wBmRecA was biochemically active and showed intrinsic binding capacity towards both single-stranded DNA and double-stranded DNA that were enhanced by ATP, suggesting ATP-induced cooperativity. wBmRecA promoted ATP hydrolysis and DNA strand exchange reactions in a concentration-dependent manner, and its binding to DNA was sensitive to temperature, pH and salt concentration. Importantly, the anti-parasitic drug Suramin, and Phthalocyanine tetrasulfonate (PcTs)-based inhibitors Fe-PcTs and 3,4-Cu-PcTs, inhibited wBmRecA activity and affected the motility and viability of Mf. The addition of Doxycycline further enhanced microfilaricidal activity of wBmRecA, suggesting potential synergism. Taken together, the omnipresence of wBmRecA in B. malayi life stages and the potent microfilaricidal activity of RecA inhibitors suggest an important role of wBmRecA in filarial pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call