Abstract

We engineered an acetyl xylan esterase ( AwaxeA) gene from Aspergillus awamori into a heterologous expression system in Pichia pastoris. Purified recombinant AwAXEA (rAwAXEA) displayed the greatest hydrolytic activity toward α-naphthylacetate (C2), lower activity toward α-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. Putative catalytic residues, Ser 119, Ser 146, Asp 168 and Asp 202, were substituted for alanine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the four mutant enzymes were examined. The S119A and D202A mutant enzymes were catalytically inactive, whereas S146A and D168A mutants displayed significant hydrolytic activity. These observations indicate that Ser 119 and Asp 202 are important for catalysis. The S146A mutant enzyme showed lower specific activity toward the C2 substrate and higher thermal stability than wild-type enzyme. The lower activity of S146A was due to a combination of increased K m and decreased k cat. The catalytic efficiency of S146A was 41% lower than that of wild-type enzyme. The synthesis of ethyl acetate was >10-fold than that of ethyl n-hexanoate synthesis for the wild-type, S146A and D168A mutant enzymes. However, the D202A showed greater synthetic activity of ethyl n-hexanoate as compared with the wild-type and other mutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.