Abstract
Two kinds of membranes (plasma membranes and intracellular membranes) have been separated from human platelets by fractionation on Percoll gradients (successively at pH 7.4 and pH 9.6). On alkaline Percoll gradient, plasma membranes floated at low density, as shown with specific markers such as [ 3H]concanavalin A and monoacylglycerol lipase, whereas intracellular membranes sedimented in the higher densities and displayed a 5.6–12.4-fold enrichment in NADH diaphorase, antimycin insensitive NADH-cytochrome-c oxidoreductase and Ca 2+-ATPase. Another criterion allowing differentiation of two membrane populations of human platelets was their lipid composition, which showed a cholesterol/phospholipid molar ratio of 0.5 in plasma membranes against 0.2 in intracellular membranes. Phospholipid analysis of the two kinds of membranes displayed also quite different profiles, since phosphatidylcholine increased from 30–32% in the plasma membrane to 52–66% in the intracellular membranes. This was at the expense of sphingomyelin (20–23% in plasma membrane, against 6.8–7.7% in intracellular membranes) and of phosphatidylserine (12–13% in plasma membrane, against 2–6% in intracellular membranes). Other striking differences between plasma membranes and intracellular membranes were obtained by SDS-polyacrylamide gel electrophoresis, which revealed the absence of actin and myosin in the intracellular membrane, whereas both proteins were present in significant amounts in plasma membranes. Finally, intracellular membranes but not plasma membranes were able to incorporate calcium. These results suggest that intracellular membrane fractions are derived from the dense tubular system and plasma membranes should correspond to the whole surface membrane of human platelets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.