Abstract
We have found a phospholipase D activity in the postnuclear fraction of human neutrophils, employing phosphatidylinositol as exogenous substrate. This phospholipase D activity was assessed by both phosphatidate formation and by free inositol release in the presence of 15 mM LiCl in the reaction mixture and in the absence of Mg2+ ions to prevent inositol-1-phosphate phosphatase activity. To assess further the phospholipase D activity, we studied its capacity to catalyze a transphosphatidylation reaction, as a unique feature of the enzyme. It was detected as [14C]phosphatidylethanol formation when the postnuclear fraction was incubated with [14C]phosphatidylinositol in the presence of ethanol. The phospholipase D showed a major optimum pH at 7.5 and a minor one at pH 5.0. Neutral and acid phospholipase D activities were differentially located in subcellular fractionation studies of resting neutrophils, namely in the cytosol and in the azurophilic granules, respectively. Neutral phospholipase D required Ca2+ ions to the active, whereas the acid enzyme activity was Ca2(+)-independent. The neutral phospholipase D activity showed a certain specificity for phosphatidylinositol, as it was able to hydrolyze phosphatidylinositol at a much higher rate than phosphatidylcholine, in the absence and in the presence of different detergents. This neutral phospholipase D activity behaved as a protein of high molecular mass (350-400 kDa) by gel filtration chromatography. Moreover, neutral phospholipase D activity was detected in the postnuclear fraction of human monocytes, by measuring free inositol release from phosphatidylinositol as exogenous substrate, under the same experimental conditions as those used with neutrophils. The enzyme displayed similar specific activities in both cell types as well as the same degree of activation after cell stimulation with the calcium ionophore A23187. These results demonstrate the existence of two phospholipase D activities with different pH optima and intracellular location in human neutrophils. Furthermore, these results suggest that this phospholipase D can play a role in signal-transducing processes during cell stimulation in human phagocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.