Abstract

Growth of Pseudomonas aeruginosa on acyclic terpene alcohols (citronellol) and on other methyl-branched compounds such as leucine or isovalerate requires a functional leucine/isovalerate utilization (Liu) pathway. In this study, we investigated the liuABCDE gene cluster by insertion mutant analysis, heterologous expression of liuA in Escherichia coli and by biochemical characterization of purified LiuA protein. Mutants with insertion in any of the liu genes were unable to utilize acyclic terpenes or leucine/isovalerate and confirmed the importance of the liu genes for catabolism of methyl-branched compounds. An insertion mutant in liuA was complemented by a liuA copy in trans, indicating that possible polar downstream effects of the insertion are not essential for growth. LiuA purified from recombinant E. coli revealed acyl-CoA dehydrogenase activity with isovaleryl-CoA (KM 2.3 microM) and butyryl-CoA as substrates. Other acyl-CoA compounds such as isobutyryl-CoA, 3-hydroxybutyryl-CoA, octanoyl-CoA, citronellyl-CoA or 5-methyl-hex-4-enoyl-CoA were not utilized. Experimental evidence for expression and essential functions of other Liu proteins in metabolism of methyl-branched compounds is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.