Abstract
Stomatal opening, which is mediated by blue light receptor phototropins, is driven by activation of the plasma membrane H(+)-ATPase via phosphorylation of the penultimate threonine in the C-terminus and subsequent binding of a 14-3-3 protein. However, the biochemical properties of the protein kinase and protein phosphatase for H(+)-ATPase are largely unknown. We therefore investigated in vitro phosphorylation and dephosphorylation of H(+)-ATPase. H(+)-ATPase was phosphorylated in vitro on the penultimate threonine in the C-terminus in isolated microsomes from guard cell protoplasts of Vicia faba. Phosphorylated H(+)-ATPase was dephosphorylated in vitro, and the dephosphorylation was inhibited by EDTA, a divalent cation chelator, but not by calyculin A, an inhibitor of type 1 and 2A protein phosphatases. Essentially the same results were obtained in purified plasma membranes from etiolated Arabidopsis seedlings, indicating that a similar protein kinase and phosphatase are involved in plant cells. Further analyses revealed that phosphorylation of the H(+)-ATPase is insensitive to K-252a, a potent inhibitor of protein kinase, and is hypersensitive to Triton X-100, a non-ionic detergent. Moreover, dephosphorylation required Mg(2+) but not Ca(2+), and protein phosphatase was localized in the 1% Triton X-100-insoluble fraction. These results demonstrate that a protein kinase-phosphatase pair, K-252a-insensitive protein kinase and Mg(2+)-dependent type 2C protein phosphatase, co-localizes at least in part with the H(+)-ATPase in the plasma membrane and regulates the phosphorylation status of the penultimate threonine of the H(+)-ATPase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.