Abstract

S-Nitrosation of cysteine beta93 in hemoglobin (S-nitrosohemoglobin (SNO-Hb)) occurs in vivo, and transnitrosation reactions of deoxygenated SNO-Hb are proposed as a mechanism leading to release of NO and control of blood flow. However, little is known of the oxygen binding properties of SNO-Hb or the effects of oxygen on transnitrosation between SNO-Hb and the dominant low molecular weight thiol in the red blood cell, GSH. These data are important as they would provide a biochemical framework to assess the physiological function of SNO-Hb. Our results demonstrate that SNO-Hb has a higher affinity for oxygen than native Hb. This implies that NO transfer from SNO-Hb in vivo would be limited to regions of extremely low oxygen tension if this were to occur from deoxygenated SNO-Hb. Furthermore, the kinetics of the transnitrosation reactions between GSH and SNO-Hb are relatively slow, making transfer of NO+ from SNO-Hb to GSH less likely as a mechanism to elicit vessel relaxation under conditions of low oxygen tension and over the circulatory lifetime of a given red blood cell. These data suggest that the reported oxygen-dependent promotion of S-nitrosation from SNO-Hb involves biochemical mechanisms that are not intrinsic to the Hb molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.