Abstract

Deacetyl-7-aminocephalosporanic acid (D-7-ACA), which could be converted from 7-aminocephalosporanic acid (7-ACA), is a crucial starting material that is used for synthesizing industrial semisynthetic β-lactam antibiotics. Enzymes involved in the conversion from 7-ACA to D-7-ACA present critical resources in the pharmaceutical industry. In the present study, a putative acetylesterase, EstSJ, identified from Bacillus subtilis KATMIRA1933, was first heterologously expressed in Escherichia coli BL21(DE3) cells and biochemically characterized. EstSJ belongs to carbohydrate esterase family 12 and is active on short-chain acyl esters from p-NPC2 to p-NPC6. Multiple sequence alignments showed that EstSJ was also an SGNH family esterase with a typical GDS(X) motif at its N-terminal end and a catalytic triad composed of Ser186-Asp354-His357. The purified EstSJ displayed the highest specific activity of 1,783.52 U mg-1 at 30°C and pH 8.0, and was stable within the pH range of 5.0-11.0. EstSJ can deacetylate the C3' acetyl group of 7-ACA to generate D-7-ACA, and the deacetylation activity was 4.50 U mg-1. Based on the structural and molecular docking with 7-ACA, the catalytic active sites (Ser186-Asp354-His357) together with four substrate-binding residues (Asn259, Arg295, Thr355, and Leu356) of EstSJ are revealed. This study provided a promising 7-ACA deacetylase candidate that could be applied to produce D-7-ACA from 7-ACA in the pharmaceutical industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.