Abstract
Allene oxide synthases (AOSs) were isolated from liverworts and charophytes. These AOSs exhibited enzymatic properties similar to those of angiosperms but formed a distinct phylogenetic clade. Allene oxide synthase (AOS) and hydroperoxide lyase (HPL) mediate the formation of precursors of jasmonates and carbon-six volatiles, respectively. AOS and HPL utilize fatty acid hydroperoxides and belong to the plant cytochrome P450 74 (CYP74) family that mediates plant defense against herbivores, pathogens, or abiotic stresses. Although members of the CYP74 family have been reported in mosses and other species, the evolution and function of multiple CYP74 genes in plants remain elusive. Here, we show that the liverwort Marchantia polymorpha belongs to a basal group in the evolution of land plants; has two closely related proteins (59% identity), MpAOS1 and MpAOS2, that are similar to moss PpAOS1 (49 and 47% identity, respectively); and exhibits AOS activity but not HPL activity. We also found that the green microalgae Klebsormidium flaccidum, consist of multicellular and non-branching filaments, contains an enzyme, KfAOS, that is similar to PpAOS1 (37% identity), and converts 13-hydroperoxide of linolenic acid to 12-oxo-phytodienoic acid in a coupled reaction with allene oxide cyclase. Phylogenetic analysis showed two evolutionarily distinct clusters. One cluster comprised AOS and HPL from charophytic algae, liverworts, and mosses, including MpAOSs and KfAOS. The other cluster was formed by angiosperm CYP74. Our results suggest that plant CYP74 enzymes with AOS, HPL, and divinyl ether synthase activities have arisen multiple times and in the two different clades, which occurred prior to the divergence of the flowering plant lineage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.