Abstract

Arabinan in plant cell wall constitutes a major source of arabinose and arabino-oligosaccharides in nature. Exo-α-l-1,5-arabinanases release arabinose or arabino-oligosaccharides from arabinan in an exo-acting manner and therefore contribute to arabinan degradation. In this study, an exo-α-l-1,5-arabinanase belonging to GH93 family was identified from the thermophilic filamentous fungus Rasamsonia emersonii. The corresponding encoding gene (Reabn93) was cloned from the R.emersonii genome and heterologously expressed in Pichia pastoris. The purified recombinant ReAbn93 exhibited the maximum activity at 70°C and retained 70% of its activity after incubation at 70°C for 3h ReAbn93 had an acidic pH optimum (pH 4.0) but remained stable over a broad pH range (pH 3-9). The specific activity of ReAbn93 toward linear arabinan under optimal conditions was 466.08Umg-1. Similar to the few other reported GH93 members, ReAbn93 degrades linear arabinan or arabino-oligosaccharides in an exo-acting manner with arabinobiose as the only hydrolytic product. Of note, ReAbn93 possessed remarkably better thermostability and higher specific activity compared to the only reported thermophilic counterpart in GH93, and therefore holds potential in relevant biotechnological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.