Abstract

Bacterioferritin comigratory protein family 1 Cys peroxiredoxin from Candidatus Liberibacter asiaticus (CLaBCP) is an important antioxidant defense protein that participates in the reduction of ROS, free radicals, and peroxides. In the present study, we report the biochemical studies and in silico screening of potent antibacterial molecules against CLaBCP. The CLaBCP showed enzymatic activity with the Km value 54.43, 94.34, 120.6 µM, and Vmax of 59.37, 69.37, 70.0 µM min−1 for H2O2, TBHP, CHP respectively. The residual peroxidase activity of CLaBCP was analyzed at different ranges of pH and temperatures. The CLaBCP showed structural changes and unfolding in the presence of its substrates and guanidinium chloride by CD and fluorescence. The structure-based drug design method was employed to screen and identify the more efficient molecule against CLaBCP. The validated CLaBCP model was used for the virtual screening of potent antibacterial molecules. The docking was performed at CLaBCP active site to evaluate the binding energy of the top five molecules (LAS 34150849, BDE 33184869, LAS 51497689, BDE 33672484, and LAS 34150966). All identified molecule has a higher binding affinity than adenanthin analyzed by molecular docking. Molecular dynamics studies such as RMSD, Rg, SASA, and PCA results showed that the CLaBCP inhibitor(s) complex is more stable than the CLaBCP-adenanthin complex. MMPBSA results suggested that the identified molecule could form a lower energy CLaBCP-inhibiter(s) complex than the CLaBCP-adenanthin complex. The screened molecules may pave the route for the development of potent antibacterial molecules against CLa. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.