Abstract
Amino-functionalized magnetic nanoparticles (Fe3O4) have been investigated as a support for covalent immobilization of lipase. The nanoparticles were prepared by chemical coprecipitation method and subsequently were coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction. With glutaraldehyde, as the coupling agent, the lipase from Rhizopus oryzae was successfully immobilized onto the amino-functionalized magnetic nanoparticles. The synthesized support was characterized by transmission electron microscopy and Fourier transform infrared spectroscopy. The results showed that the load of immobilized protein could reach as high as 7mg protein g−1 support. The optimum pH for maximal catalytic activity of the immobilized enzyme was 8.0 at 40°C. The Km values were found as 0.66 and 0.57mgmL−1 for the free and immobilized enzymes, respectively. The Vmax values for the free and immobilized enzymes were calculated as 0.14 and 0.47μmolmg−1min−1, in turn, when p-nitrophenyl butyrate (pNPB) was used as the substrate. A quick separation of lipase from the reaction mixture was achieved when a magnetically active support was applied. In comparison to the free enzyme, the immobilized enzyme was thermally stable and was reusable for 10 cycles while retaining 64% of its initial activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.