Abstract

Aspartylglucosaminidase (AGA) is a low-abundance intracellular enzyme that plays a key role in the last stage of glycoproteins degradation, and whose deficiency leads to human aspartylglucosaminuria, a lysosomal storage disease. Surprisingly, high amounts of AGA-like proteins are secreted in the venom of two phylogenetically distant hymenopteran parasitoid wasp species, Asobara tabida (Braconidae) and Leptopilina heterotoma (Cynipidae). These venom AGAs have a similar domain organization as mammalian AGAs. They share with them key residues for autocatalysis and activity, and the mature α- and β-subunits also form an (αβ)2 structure in solution. Interestingly, only one of these AGAs subunits (α for AtAGA and β for LhAGA) is glycosylated instead of the two subunits for lysosomal human AGA (hAGA), and these glycosylations are partially resistant to PGNase F treatment. The two venom AGAs are secreted as fully activated enzymes, they have a similar aspartylglucosaminidase activity and are both also efficient asparaginases. Once AGAs are injected into the larvae of the Drosophila melanogaster host, the asparaginase activity may play a role in modulating their physiology. Altogether, our data provide new elements for a better understanding of the secretion and the role of venom AGAs as virulence factors in the parasitoid wasps’ success.

Highlights

  • Predicted model structures corresponding to amino acids 28 to 336 and 22 to 335 of an N-terminal signal peptide of 19 (AtAGA) and LhAGA, respectively, were superposed with the solved human AGA structure, evidencing a strong conservation of the overall structure (Fig 2A)

  • The hAGA W34 residue and the corresponding residues in AtAGA and LhAGA were predicted to differ in their spatial geometry (Fig 2B), and differences were observed at positions 72 and 257 of the H. sapiens sequence (Fig 1)

  • AtAGA has a serine at position 257 while LhAGA and the human AGA both have a threonine

Read more

Summary

Introduction

More than 60% of the 115,000 described hymenopteran species [1] have a parasitoid lifestyle [2,3]. They oviposit in (endoparasitoids) or on (ectoparasitoids) other arthropod hosts that they use as a source of nutrients during larval development, leading to host death. Parasitoid wasps play an important role in controlling field arthropod populations and are use as biological auxiliaries against agricultural pests. Oviposition of endoparasitoid eggs into insect hosts induces an immune response resulting in egg melanotic encapsulation.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.