Abstract

Sugar-beet pulp (SBP) is an abundant, cellulose-rich, non-food by-product of agriculture. Oxidised SBP (oP) has valuable viscosity attributes, and different oxidation protocols yield higher- or lower-viscosity oP. We investigated how SBP polysaccharides change during oxidation, since these changes must define oP quality. Oxidation solubilised much pectin and hemicellulose; however, most cellulose stayed insoluble. Fresh SBP contains negligible ‘hemicellulose a’ (=alkali-extractable polysaccharides that precipitate upon acidification), but oxidation created abundant glucose-rich ‘hemicellulose a’ from SBP cellulose. We propose that the cellulose acquired COOH groups, conferring alkali-extractability and admitting more water, thereby augmenting viscosity. The pectin and hemicellulose molecules that were retained during oxidation had been partially depolymerised, and their median Mr correlated negatively with oP viscosity. We developed a novel procedure to explore cellulose's permeability by measuring the ingress of tritium from [3H]water into microfibrils and its retention during desiccation. In high-crystallinity Avicel, 75 % of the cellulose's OH groups were inaccessible to [3H]water, whereas filter-paper cellulose acquired the theoretical maximum 3H, indicating an open structure. Retention of 3H by oP preparations correlated positively with viscosity, indicating that increased cellulose accessibility generates a viscous oP. In conclusion, depolymerisation and solubilisation of matrix polysaccharides, accompanied by increasing water-accessibility of cellulose, enhanced SBP's viscosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call