Abstract

The management of mine tailings (MT) is commonly workload heavy, intrusive, and expensive. Phytostabilization offers a promising approach for MT management; however, it poses challenges due to the unfavorable physicochemical properties of these wastes. Nevertheless, native microorganisms capable of supporting plant growth and development could enhance the efficacy of phytostabilization. This study assesses the biological activity of microbial communities from the root zone of Baccharis linearis, which is naturally present in MT, in order to evaluate their biotechnological potential for phytostabilization. The root zone and bulk samples were collected from B. linearis plants located within a MT in the Mediterranean zone of Chile. Enzyme activities related to the cycling of C, N, and P were assessed. The community-level physiological profile was evaluated using the MicroRespTM system. Bacterial plant growth-promoting (PGP) traits and colony forming units (CFU) were evaluated through qualitative and microbiological methods, respectively. CFU, enzyme activities, and CLPP were higher in the root zone compared with the bulk samples. Five bacterial strains from the root zone exhibited PGP traits such as P solubilization and N acquisition, among others. The presence of microbial communities in the root zone of B. linearis with PGP traits suggests their potential to enhance the ecological management of MT through phytostabilization programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.