Abstract

The hepatotoxic response elicited by a chemical agent depends on the concentration of the toxicant (parent compound or metabolite) delivered to the hepatocytes across the liver acinus via blood flow. Hepatotoxicants produce characteristic patterns of cytolethality in specific zones of the acinus due to the differential expression of enzymes and the concentration gradients of cofactors and toxicant in blood across the acinus. Most hepatotoxic chemicals produce necrosis, characterized by swelling in contiguous tracts of cells and inflammation. This process has been contrasted with apoptosis, where cells and organelles condense in an orderly manner under genetic control. Biotransformation can activate a chemical to a toxic metabolite or decrease toxicity. Quantitative or qualitative species differences in biotransformation pathways can lead to significant species differences in hepatotoxicity. Fasted rodents are more susceptible to the hepatotoxic effects of many chemicals due to glutathione depletion and cytochrome P-450 induction. Freshly isolated hepatocytes are the most widely used in vitro system to study mechanisms of cell death. Hepatotoxicants can interact directly with cell macromolecules or via a reactive metabolite. The reactive metabolite can alkylate critical cellular macromolecules or induce oxidative stress. These interactions generally lead to a loss of calcium homeostasis prior to plasma membrane lysis. Mitochondria have been shown to be important cellular targets for many hepatotoxicants. Decreasing hepatocellular adenosine triphosphate concentrations compromise the plasma membrane calcium pump, leading to increased cellular calcium concentrations. Calcium-dependent endonucleases produce double-strand breaks in DNA before cell lysis. These biochemical pathways induced by necrosis-causing toxicants are similar to the biochemical pathways involved in apoptosis, suggesting that apoptosis and necrosis differ in intracellular and extracellular control points rather than in the biochemistry involved in cell death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.