Abstract

Chronic, non-healing wounds contribute significantly to the suffering of patients with co-morbidities in the clinical population with mild to severely compromised immune systems. Normal wound healing proceeds through a well-described process. However, in chronic wounds this process seems to become dysregulated at the transition between resolution of inflammation and re-epithelialization. Bioburden in the form of colonizing bacteria is a major contributor to the delayed headlining in chronic wounds such as pressure ulcers. However how the microbiome influences the wound metabolic landscape is unknown. Here, we have used a Systems Biology approach to determine the biochemical associations between the taxonomic and metabolomic profiles of wounds colonized by bacteria. Pressure ulcer biopsies were harvested from primary chronic wounds and bisected into top and bottom sections prior to analysis of microbiome by pyrosequencing and analysis of metabolome using 1H nuclear magnetic resonance (NMR) spectroscopy. Bacterial taxonomy revealed that wounds were colonized predominantly by three main phyla, but differed significantly at the genus level. While taxonomic profiles demonstrated significant variability between wounds, metabolic profiles shared significant similarity based on the depth of the wound biopsy. Biochemical association between taxonomy and metabolic landscape indicated significant wound-to-wound similarity in metabolite enrichment sets and metabolic pathway impacts, especially with regard to amino acid metabolism. To our knowledge, this is the first demonstration of a statistically robust correlation between bacterial colonization and metabolic landscape within the chronic wound environment.

Highlights

  • Over the past decade, significant progress has been made in the treatment of acute injuries

  • The bacterial load within the patient pressure ulcers was determined by pyrosequencing the variable regions 1–2 of eubacterial 16S rRNA genes from punch biopsy samples

  • Firmicutes was relatively more abundant in the top section of the wound biopsy than in the bottom section suggesting that the bacterial load from this phylum varies across the landscape of the wound

Read more

Summary

Introduction

Significant progress has been made in the treatment of acute injuries. Treatment of chronic wounds such as diabetic foot ulcers, venous leg ulcers, traumatic non-healing wounds, and pressure ulcers remains a major socioeconomic burden with an estimated $58 billion in medical costs associated with the treatment of diabetic ulcers alone [1]. Pressure ulcers in particular are a devastating problem in the elderly and disabled, and an increasing issue of concern in wounded soldiers returning from overseas. Such chronic wounds are defined as lasting greater than 30 days and are characterized by a failure to progress through the normal wound healing process [2]. In chronic wounds the major contributing factor to wound persistence is bioburden in the form of colonizing bacteria [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call