Abstract

AbstractThis study investigated the effect of silicon (Si) on resistance of bean plants (cv. ‘Peróla’) to anthracnose, caused by Colletotrichum lindemuthianum, grown in a nutrient solution containing 0 (−Si) or 2 mmol Si L−1 (+Si). The concentration of Si in leaf tissue and the incubation period increased by 55.2% and 14.3%, respectively, in +Si plants in relation to −Si plants. The area under anthracnose progress curve and the severity estimated by the software QUANT significantly decreased by 32.9% and 27%, respectively, for +Si plants. Si did not affect the concentration of total soluble phenolics. Chitinases activity was higher in the advanced stages of infection by C. lindemuthianum for leaves of −Si plants. β‐1,3‐Glucanase activity increased after C. lindemuthianum infection, but it was not enhanced by Si. Peroxidase and polyphenoloxidase activities had no apparent effect on the resistance of bean plants to anthracnose, regardless of the presence of Si. The increase in lignin concentration as well as on the phenylalanine ammonia‐lyase and lipoxygenase activities were important for the resistance of +Si plants against anthracnose. The results of this study suggest that Si may increase resistance to anthracnose in bean plants by enhancing certain biochemical mechanisms of defence as opposed to just acting as a physical barrier to penetration by C. lindemuthianum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.