Abstract

ABSTRACT Zebrafish early life stages were found to be sensitive to several synthetic dyes widely used in industries. However, as environmental concentrations of such contaminants are often at sublethal levels, more sensitive methods are required to determine early-warning adverse consequences. The aim of this study was to utilize a multibiomarker approach to examine underlying oxidative stress mechanisms triggered by sublethal concentrations of synthetic azo dye Basic Red 51 (BR51), the natural dye erythrostominone (ERY), and its light-degraded product using zebrafish embryos. Biochemical biomarkers included parameters of detoxification and markers of antioxidant system, as well as oxidative damage. Results showed pro-oxidant mechanisms attributed to BR51 and ERY as evidenced by increased glutathione S-transferase (GST) activity, a phase II detoxification enzyme related to reactive oxygen species detoxification. BR51 also elevated total glutathione (GSH+GSSG) levels and catalase activity. However, both dyes induced oxidative damage as evidenced by elevated lipid peroxidation content. In contrast, when the natural dye was photodegraded, no marked effects were observed for all biomarkers assessed. Data indicate that such dyes are pro-oxidants at sublethal concentrations, predominantly involving GSH and/or related enzymes pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.