Abstract
β-Xylosidase, of the glycoside hydrolase family 43 from Bacillus sp. HJ14, was expressed in Escherichia coli. Recombinant β-xylosidase (rHJ14GH43) exhibited maximum activity at 25 °C, approximately 15, 45, and 88% of maximum activity at 0, 10, and 20 °C, respectively, and poor stability at temperatures over 20 °C. rHJ14GH43 showed moderate or high activity, but poor stability, in NaCl, KCl, NaNO3, KNO3, Na2SO4, and (NH4)2SO4 at concentrations from 3.0 to 30.0% (w/v). The crystal structure of rHJ14GH43 was resolved and showed higher structural flexibility due to fewer salt bridges and hydrogen bonds compared to mesophilic and thermophilic β-xylosidases. High structural flexibility is presumed to be a key factor for catalytic adaptations to low temperatures and high salt concentrations. Approximately one-third of the surface of rHJ14GH43 is positively charged, which may be the primary factor responsible for poor stability in high neutral salt environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Food Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.