Abstract

β-Xylosidase, of the glycoside hydrolase family 43 from Bacillus sp. HJ14, was expressed in Escherichia coli. Recombinant β-xylosidase (rHJ14GH43) exhibited maximum activity at 25 °C, approximately 15, 45, and 88% of maximum activity at 0, 10, and 20 °C, respectively, and poor stability at temperatures over 20 °C. rHJ14GH43 showed moderate or high activity, but poor stability, in NaCl, KCl, NaNO3, KNO3, Na2SO4, and (NH4)2SO4 at concentrations from 3.0 to 30.0% (w/v). The crystal structure of rHJ14GH43 was resolved and showed higher structural flexibility due to fewer salt bridges and hydrogen bonds compared to mesophilic and thermophilic β-xylosidases. High structural flexibility is presumed to be a key factor for catalytic adaptations to low temperatures and high salt concentrations. Approximately one-third of the surface of rHJ14GH43 is positively charged, which may be the primary factor responsible for poor stability in high neutral salt environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.