Abstract

BackgroundRecovery of upper extremity (UE) motor function after stroke is variable from one to another due to heterogeneity of stroke pathology. Structural and biochemical magnetic resonance imaging of the primary motor cortex (M1) have been used to document reorganization of neural activity after stroke.ObjectiveTo assess cortical biochemical and structural causes of delayed recovery of UE motor function impairment in chronic subcortical ischemic stroke patients.MethodologyA cross-sectional study with fifty patients were enrolled: thirty patients with chronic (> 6 months) subcortical ischemic stroke suffering from persistent UE motor function impairment (not improved group) and twenty patients with chronic subcortical ischemic stroke and improved UE motor function (improved group). We recruited a group of (16) age-matched healthy subjects. Single voxel proton magnetic resonance spectroscopy (1H-MRS) was performed to measure n-acetylaspartate (NAA) and glutamate+glutamine (Glx) ratios relative to creatine (Cr) in the precentral gyrus which represent M1of hand area in both ipsilesional and contralesional hemispheres. Brain magnetic resonance imaging (MRI) to measure precentral gyral thickness is representing the M1of hand area. UE motor function assessment is using the Fugl Meyer Assessment (FMA-UE) Scale.ResultsThe current study found that ipslesional cortical thickness was significantly lower than contralesional cortical thickness among all stroke patients. Our study found that ipsilesional NAA/Cr ratio was lower than contralesional NAA/Cr among stroke patients. UE and hand motor function by FMA-UE showed highly statistically significant correlation with ipsilesional cortical thickness and ipsilesional NAA/Cr ratio, more powerful with NAA/Cr ratio.ConclusionWe concluded that persistent motor impairment in individuals with chronic subcortical stroke may be at least in part related to ipsilesional structural and biochemical changes in motor areas remote from infarction in form of decreased cortical thickness and NAA/Cr ratio which had the strongest relationship with that impairment.

Highlights

  • Motor impairment of one side of the body is a major cause of disability in activities of daily living

  • Our study found that ipsilesional NAA/Cr ratio was lower than contralesional NAA/Cr among stroke patients

  • We concluded that persistent motor impairment in individuals with chronic subcortical stroke may be at least in part related to ipsilesional structural and biochemical changes in motor areas remote from infarction in form of decreased cortical thickness and NAA/Cr ratio which had the strongest relationship with that impairment

Read more

Summary

Introduction

Motor impairment of one side of the body is a major cause of disability in activities of daily living. Recovery from strokes varies from one patient to another due to the heterogeneity of the stroke pathology and rehabilitation strategies. Understanding the brain pathologies associated with upper extremity (UE) impairment after stroke, the underlying mechanisms of injury, and the processes associated with recovery is important for achieving good recovery and successful rehabilitation. Structural and biochemical brain imaging of primary motor cortices has been used to document the reorganization of neural activity after stroke. Ipsilesional and contralesional primary motor cortices, as well as the dorsal premotor cortex, have been identified as areas that can undergo substantial post-stroke neuroplasticity [2]. Recovery of upper extremity (UE) motor function after stroke is variable from one to another due to heterogeneity of stroke pathology. Structural and biochemical magnetic resonance imaging of the primary motor cortex (M1) have been used to document reorganization of neural activity after stroke

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call