Abstract

Light-harvesting antennas in photosynthesis capture light energy and transfer it to the reaction centers (RCs) where photochemistry takes place. The sustainable growth of the reef-building corals relies on a constant supply of the photosynthates produced by the endosymbiotic dinoflagellate, belonging to the family of Symbiodiniaceae. The antenna system in this group consists of the water-soluble peridinin-chlorophyll a-protein (PCP) and the intrinsic membrane chlorophyll a-chlorophyll c2-peridinin protein complex (acpPC). In this report, a nonameric acpPC is reported in a dinoflagellate, Fugasium kawagutii (formerly Symbiodinium kawagutii sp. CS-156). We found that extensive biochemical purification altered the oligomerization states of the initially isolated nonameric acpPC. The excitation energy transfer pathways in the acpPC nonamer and its variants were studied using time-resolved fluorescence and time-resolved absorption spectroscopic techniques at 77K. Compared to the well-characterized trimeric acpPC, the nonameric acpPC contains an 11nm red-shifted terminal energy emitter and substantially altered excited state lifetimes of Chl a. The observed energetic overlap of the fluorescence terminal energy emitters with the absorptionof RCs is hypothesized to enable efficient downhill excitation energy transfer. Additionally, the shortened Chl a fluorescence decay lifetime in the oligomeric acpPC indicate a protective self-relaxation strategy. We propose that the highly-oligomerized acpPC nonamer represents an intact functional unit in the Symbiodiniaceae thylakoid membrane. They perform efficient excitation energy transfer (to RCs), and are under manageable regulations in favor of photoprotection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call