Abstract

We determined whether the biochemical and physicochemical backgrounds of patients with brushite stones differ from those with hydroxyapatite and calcium oxalate stones. From a computer data base of patients completing ambulatory evaluation 19 with brushite stones, 24 with hydroxyapatite stones and 762 with calcium oxalate stones were identified with the specified composition in greater than 70% of stones. Absorptive hypercalciuria type I was present in 63% of patients with brushite, 17% with hydroxyapatite and 30% with calcium oxalate stones. Distal renal tubular acidosis was noted in 32% of patients with brushite, 42% with hydroxyapatite and 3% with calcium oxalate stones. Mean urinary calcium in the brushite group was significantly higher than in the hydroxyapatite and calcium oxalate groups (265 +/- 125 vs 186 +/- 103 and 187 +/- 95 mg daily, respectively). Urinary pH in the brushite group was slightly but significantly higher than in the calcium oxalate group (6.15 +/- 0.30 vs 5.91 +/- 0.42). The brushite relative saturation ratio in the brushite group was marginally higher than in the hydroxyapatite group and significantly higher than in the calcium oxalate group (3.25 +/- 2.03 vs 2.34 +/- 1.51 and 1.83 +/- 1.66, respectively). Patients with predominantly brushite stones could be distinguished from those with predominantly hydroxyapatite and calcium oxalate stones by higher urinary saturation with respect to brushite due mainly to hypercalciuria from absorptive hypercalciuria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.