Abstract
In order to investigate the utility of the fluorine-19 nucleus as a spectroscopic probe, a fluorinated analog of myristic acid has been incorporated into the membrane lipids of an unsaturated fatty acid auxotroph of Salmonella typhimurium. It is capable of supporting limited growth at temperatures above 37°C. Freeze-fracture electron microscopic examinations of the membrane ultrastructure show a temperature and fatty acid supplement-dependent segregation of intramembranous protein particles into distinct patches in the auxotrophic membrane leaving intramembranous protein-denuded areas. The occurrence of these patches seems to be related to the phase separation of membrane lipids. Corresponding changes in the transport and accumulation of methyl thio-β- d-galactopyranoside and tetracycline are observed. However, transport of histidine does not appear to be dependent on the physical state of the membrane lipids. The auxotroph shows differences in growth and morphological characteristics from those of the wild type. Functions of both inner and outer membranes are shown to be affected as a response to the fatty acid chain composition of the lipids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.