Abstract

L-asparaginase, an antileukemic enzyme, is indispensable to the treatment of Acute Lymphoblastic Leukemia (ALL). However, the intrinsic glutaminase activity entails various side effects to the patients; thus, an improved version of the enzyme lacking glutaminase activity would be a requisite for effective treatment management of ALL. The present study highlights the biochemical and molecular characteristics of the recombinant glutaminase-free L-asparaginase from Bacillus australimaris NJB19 (BaAsp). Investigation of the active site architecture of the protein unraveled the binding interactions of BaAsp with its substrate. Comparative analysis of the L-asparaginase sequences revealed few substitutions of key amino acids in the BaAsp that could construe its substrate selectivity and specificity. The purified heterologously expressed protein (42 kDa) displayed maximum L-asparaginase activity at 35–40 °C and pH 8.5–9, with no observed L-glutaminase activity. The kinetic parameters, Km and Vmax, were determined as 45.6 μM and 0.16 μmoles min−1, respectively. Furthermore, in silico analysis revealed a conserved zinc-binding site in the protein, which is generally implicated in inhibiting the L-asparaginase activity. However, BaAsp was not inhibited by zinc at 1 mM concentration. Therefore, the findings provide insights on the biochemical and molecular details of BaAsp, which could be valuable in formulating it for alternate antileukemic drug therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.