Abstract

Trypsin modulating oostatic factor (TMOF), a decapeptide hormone synthesized by female mosquito ovaries, ganglia and the central nervous system of Aedes aegypti, terminates trypsin biosynthesis in larvae, and blood-fed female mosquitoes. Earlier, TMOF was cloned and expressed as a single copy in Chlorella dessicata and in Saccharomyces cerevisiae cells as a potential larvicide. Here we report the use of a methylotrophic yeast cells, Pichia pastoris, that efficiently express multi copies of heterologous proteins, that are readily ingested by mosquito larvae. P. pastoris was engineered using pPICZB (Invitrogen, CA, United States), and 2 genes: gfp-tmfA and tmfA inserted between KpnI and XbaI in the multiple cloning site. The plasmid carries a strong AOXI promoter and P. pastoris KM71 and KM71H cells were transformed by homologous recombination. The synthesis of GFP-TMOF was followed using UV and clones were analyzed using southern and Northern blot analyses. Cloning tmfA into KM71H and selection on high Zeocin concentration (2.0 mg/mL) identified a clone that carried 10 copies of tmfA. A comparison between a single and high copy (10 genes) insertions using Northern blot analyses showed that a tmfA transcript was highly expressed even after 120 h. SDS-PAGE analysis of KM71 cells transformed with gfp-tmfA identified a protein band that ran at the expected Mr of 31 kDa. Enzyme Linked Immunoadsorbant Assay (ELISA) analysis of the recombinant cells showed that 1.65 × 108 and 8.27 × 107 cells produce 229 and 114 μM of TMOF, respectively, and caused 100% larval mortality when fed to groups of 5 larvae in 25 mL water. These results indicate that the recombinant P. pastoris cells could be used in the future in the marsh to control mosquito populations.

Highlights

  • Environmental, resistance and human health concerns for using chemical pesticides have been a major reason in searching for new biorational insecticides to battle pests such as mosquitoes, transmitters of several detrimental human diseases including malaria, dengue, yellow fever, encephalitis (Spielman and D’Antonio, 2001), and Zika virus

  • High losses occurred during the lengthy purification steps we showed that after 120 h of shake flask fermentation of engineered KM71H-tmf A cells 136 ± 13 could be detected proving that the engineered cells synthesize Trypsin Modulating Oostatic Factor (TMOF)

  • We used P. pastoris cells to express TMOF a decapeptide hormone that was shown to be effective against mosquito larvae when expressed in Chlorella desiccate, and S. cerevisiae (Borovsky et al, 2016, 2018)

Read more

Summary

Introduction

Environmental, resistance and human health concerns for using chemical pesticides have been a major reason in searching for new biorational insecticides to battle pests such as mosquitoes, transmitters of several detrimental human diseases including malaria, dengue, yellow fever, encephalitis (Spielman and D’Antonio, 2001), and Zika virus. These diseases cause health problem worldwide and Malaria alone causing death to more than one million people in Africa including 300–500 million clinical cases annually (World Health Organization [WHO], 1998). Peptides that disrupt egg development and digestion in mosquitoes are good candidates for biodegradable mosquito control agents

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call