Abstract

Flavonoid compounds play important roles as flower pigments, stress metabolites formed in response to UV, during pollen germination and for polar auxin transport (Trends Plant Sci. 1 (1996) 377). Flavonoid sulfate esters are common in plants, especially the Asteraceae; however, due to the lack of information regarding the factors that regulate their accumulation, their exact role remains to be elucidated. The biosynthesis of flavonol sulfate esters is catalyzed by a number of position specific flavonol sulfotransferases (STs). An Arabidopsis thaliana database search has allowed us to identify and classify 18 putative ST coding sequences. We report here the cloning and characterization of the AtST3a member of this family that is expressed at early stages of seedling development and in the inflorescence stem and siliques of mature plants. The recombinant AtST3a protein exhibits strict specificity for position 7 of flavonoids. In contrast to previously characterized flavonol 7-ST from Flaveria bidentis that sulfonates only flavonol disulfates, AtST3a was found to accept as substrates a number of flavonols and flavone aglycones, as well as their monosulfate esters. The discovery of a flavonol ST from A. thaliana suggests that flavonol sulfates are more widely distributed than originally believed and this model plant could be used to study their biological significance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call