Abstract

Superoxide dismutases (SODs) form the foremost line of defense against ROS in aerobes. Pennisetum glaucum cDNA library is constructed to isolate superoxide dismutase cDNA clone (PgCuZnSOD) of 798bp comprising 5′UTR (111bp), an ORF (459bp) and 3′UTR (228bp). Deduced protein of 152 amino acids (16.7kDa) with an estimated isoelectric point of 5.76 shared highest homology to cytoplasmic CuZnSODs from monocots i.e., maize, rice. Predicted 3D model reveals a conserved eight-stranded ß-barrel with active site held between barrel and two surface loops. Purified recombinant protein is relatively thermo-stable with maximal activity at pH 7.6 and shows inhibition with H2O2 (4.3mM) but not with azide (10mM). In Pennisetum seedlings, abiotic stress induced PgCuZnSOD transcript up-regulation directly correlates to high protein and activity induction. Overexpression of PgCuZnSOD confers comparatively enhanced tolerance to methyl viologen (MV) induced oxidative stress in bacteria. Results imply that PgCuZnSOD plays a functional role in conferring oxidative stress tolerance to prokaryotic system and may hold significant potential to impart oxidative stress tolerance in higher plants through transgenic approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call