Abstract
Papaya is a climacteric fruit that undergoes rapid ripening and quality deterioration during postharvest storage, resulting in significant economic losses. This study employed biochemical techniques and targeted metabolomics to investigate the impact of exogenous AsA + CTS application on the energy metabolism regulation of papaya fruit during postharvest storage. We found that AsA + CTS treatment significantly increased the levels of key metabolic compounds and enzymes, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and the energy charge, as well as the succinic acid content and the activities of succinic dehydrogenase (SDH), cytochrome c oxidase (CCO), H+-ATPase, and Ca2+-ATPase. Moreover, AsA + CTS coating augmented the nicotinamide adenine dinucleotide kinase (NADK) activity and increased the NADH and NADPH concentrations. Regarding sugar metabolism, it increased the activities of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase and raised d-glucose-6-phosphate levels. These findings suggest that AsA + CTS coating application can mitigate the metabolic deterioration and sustain a primary metabolism homeostasis in papaya fruit by enhancing the tricarboxylic acid (TCA) cycle and pentose phosphate pathway (PPP), thereby preserving their quality attributes during postharvest storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.