Abstract

Escherichia coli is an extensively used host for the production of recombinant proteins, making its N-terminal methionine aminopeptidase (MAP) an attractive candidate for studies on posttranslational protein processing. The present study describes the recombinant production and properties of MAP from the DH5α strain of E. coli. The soluble and active enzyme was produced in E. coli BL21 (DE3) RIL - codon plus cells under a T7 promoter system and purified by anion-exchange chromatography. It exhibited a molecular weight of 29,200.94 Da by MALDI-TOF analysis. The purified enzyme showed specific activity of 1.64 U/mg with methionylp-nitroanilide and 1.51 U/mg with synthetic tetrapeptide substrate 'MGMM' in a discontinuous HPLC-based assay. In vitro studies showed the processing of up to 36% of Met-INFα-2b in 40 min. In silico studies revealed that the ES-complex formation between the enzyme and interferon has a ΔG -683.07 kJ/mol. Molecular docking results showed that the processed INFα-2b has greater binding affinity with IFNAR2 receptor as indicated by ΔG -784.53 kJ/mol, significantly lower than that of methionine containing INFα-2b (ΔG -717.63 kJ/mol). These findings emphasize the functional superiority or better efficacy of N-terminal methionine processed recombinant interferon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.