Abstract

Clostridium difficile is an emerging pathogen responsible for opportunistic infections in hospitals worldwide and is the main cause of antibiotic-associated pseudo-membranous colitis and diarrhea in humans. Clostridial toxins A and B (TcdA and TcdB) specifically bind to unknown glycoprotein(s) on the surface of epithelial cells in the host intestine, disrupting the intestinal barrier and ultimately leading to acute inflammation and diarrhea. The C-terminal receptor-binding domain (RBD) of TcdA, which is responsible for the initial binding of the toxin to host glycoproteins, has been predicted to contain 7 potential oligosaccharide-binding sites. To study the specific roles and functions of these 7 putative lectin-like binding regions, a consensus sequence of TcdA RBD derived from different C. difficile strains deposited in the NCBI protein database and three truncated fragments corresponding to the N-terminal (residues 1–411), middle (residues 296–701), and C-terminal portions (residues 524–911) of the RBD (F1, F2 and F3, respectively) were designed and expressed in Escherichia coli. In this study, the recombinant RBD (rRBD) and its truncated fragments were purified, characterized biologically and found to have the following similar properties: (a) are capable of binding to the cell surface of both Vero and Caco-2 cells; (b) possess Toll-like receptor agonist-like adjuvant activities that can activate dendritic cell maturation and increase the secretion of pro-inflammatory cytokines; and (c) function as potent adjuvants in the intramuscular immunization route to enhance immune responses against weak immunogens. Although F1, F2 and F3 have similar repetitive amino acid sequences and putative oligosaccharide-binding domains, they do not possess the same biological and immunological properties: (i) TcdA rRBD and its fragments bind to the cell surface, but only TcdA rRBD and F3 internalize into Vero cells within 15 min; (ii) the fragments exhibit various levels of hemagglutinin (HA) activity, with the exception of the F1 fragment, which demonstrates no HA activity; and (iii) in the presence of alum, all fragments elicit various levels of anti-toxin A-neutralizing antibody responses, but those neutralizing antibodies elicited by F2 did not protect mice against a TcdA challenge. Because TcdA rRBD, F1 and F3 formulated with alum can elicit immune protective responses against the cytotoxicity of TcdA, they represent potential components of future candidate vaccines against C. difficile-associated diseases.

Highlights

  • Opportunistic nosocomial infection in hospitalized patients is often related to Clostridium difficile infection (CDI) that develops via disruption of the balance of the intestinal micro-flora by antibiotic therapies used during hospitalization

  • The results indicated that the TcdA receptor-binding domain (RBD) amino acid sequence was highly conserved with 97% identity

  • The selected consensus amino acid sequence of RBD was composed of 911 residues and was identical to that of BI/NAP1/027-related isolates, as expected because the majority of the protein sequences deposited in the NCBI database are ribotype 027 strains (Fig 1A)

Read more

Summary

Introduction

Opportunistic nosocomial infection in hospitalized patients is often related to Clostridium difficile infection (CDI) that develops via disruption of the balance of the intestinal micro-flora by antibiotic therapies used during hospitalization. The pathogenicity of CDI is largely correlated to the clostridial toxins, toxin A and toxin B (TcdA and TcdB), that are secreted in the gastrointestinal environment of infected hosts and disrupt epithelial cell barriers in the small intestine [7] Both toxins consist of a holotoxin with multi-functional domains that mediate C. difficile pathogenesis. Among C. difficile strains deposited in the NCBI database, the amino acid sequences of the putative oligosaccharide-binding sites between TcdA and TcdB were found to share approximately 50 to 70% similarity [36]. To this end, we rationally designed two novel immunogens based on these putative oligosaccharide-binding sites of. Mouse immunogenicity studies were performed to investigate the potential of the rRBD and/or its fragments as components of candidate vaccines against CDAD

Ethics Statement
Results
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.