Abstract

Four different cell populations--designated PF, OB, OC, and PC--were isolated from calvaria of 18-day-old chick embryos for analysis of the effects of hormones on bone tissue. The cell populations were studied with histological and biochemical methods. Apart from the well-known cell types present in calvaria, a new cell type was found in the noncalcified organic matrix between the osteoblastic layer and calcified matrix. These cells were provisionally called osteocytic osteoblasts. They represent the "transition state" between osteoblasts and osteocytes. On the basis of histological studies with light microscopy (LM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), the PF population was considered to originate primarily from the periosteal fibroblasts, the OB population from the osteoblasts and osteocytic osteoblasts. The population of cells still present in calvaria from removal of periosteal fibroblasts and osteoblasts was called the OC population. This cell population was very much enriched with osteocytes. The fourth isolated population (PC) was a mixed population of fibroblasts, osteoblasts, and preosteoblasts. On exposure to parathyroid hormone (PTH), all four cell populations showed increased lactate production, but only the OB and OC populations displayed increased cAMP production. Prostaglandin E1 (PGE1) stimulated cAMP production in both OB and PF cells. From the results of this study it was concluded that PTH receptors are present on all of the cell types studied, but that occupancy of the receptor induces adenylate cyclase stimulation only in osteocytes and fully differentiated osteoblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.