Abstract
Stenotrophomonas maltophilia is a common conditional pathogen, and it is naturally resistant to most commonly used clinical antibiotics. The bacteriophage is considered to be a potential antibiotic alternative for treating multi-drug-resistant bacteria. In this study, a bacteriophage BUCT555 was isolated from hospital sewage for lysing the clinical multi-drug resistant Stenotrophomonas maltophilia. Electron microscopy studies revealed this phage belongs to the Podoviridae family. The double-stranded DNA genome of bacteriophage BUCT555 is composed of 39,440 bp with a GC content of 61.43%. The genome contains 57 open reading frames, 14 of which had assigned functions, while no virulence related genes, antibiotic resistance genes or tRNA were identified. The burst size of BUCT555 was 204 pfu per infected cell. Structure proteins of bacteriophage BUCT555 generated by SDS-PAGE and HPLC-MS revealed that it contains seven proteins with molecular weight ranging from 19 to 89 kDa. BLASTn analysis showed that phage BUCT555 has 2% homology with other phages in NCBI database, suggesting BUCT555 is a new phage genus of Podoviridae that infects Stenotrophomonas maltophilia. Characterization of the bacteriophage BUCT555 enriches our knowledge about the diversity of Stenotrophomonas maltophilia bacteriophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.