Abstract
Guanacastane diterpenoids with an unusual 5/7/6 tricyclic skeleton mainly produced by basidiomycete fungi represent a structurally intriguing class of natural products. While the chemical synthesis of several members has been achieved, the biochemical and genetic basis of their biosynthesis remain unknown. Herein, we present the identification and characterization of two crucial enzymes in the biosynthesis of guanacastane diterpenoids in Psathyrella candolleana. Heterologous expression reveals that PsaD, a typical class I diterpene synthase, catalyzes the cyclization of geranylgeranyl diphosphate to form a new guanacastane-type diterpene, guanacasta-1,3-diene (7). Moreover, we demonstrate that PsaA, a cytochrome P450 monooxygenase, can catalyze multiple oxidations of 7 to yield guanacastepene U (8). These results provide new opportunities for genome mining and metabolic engineering of guanacastane diterpenoids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.